FEATURES:

- N channel FET switches with no parasitic diode to Vcc
- No DC path to Vcc or GND
- 5 V tolerant in OFF and ON state
- 5V tolerant I/Os
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Flat Ron characteristics from 0-5V
- Rail-to-rail switching 0 -5V
- Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6 V
- Maximum operating frequency for data - 150MHz
- LVTTL-compatible control Inputs
- Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- 25Ω resistors for low noise and line matching
- Available in QSOP and SOIC packages

DESCRIPTION:

The QS3VH2245Hotswitch8-bitbus switch is specially designed for ahotswapping environment. The QS3VH2245, with 25Ω ON resistance and 1.25nspropagation delay, is ideal for line matching and lownoise environments. The switches can be turned ON under the control of the LVTTL-compatible OutputEnable signal for bidirectional data flow with no added delay or ground bounce. In the OFF and ON states, the switches are 5V-tolerant. In the OFF state, the switches offer very high impedence at the terminals.

The combination of small propagation delay, high OFF impedance, and over-voltage tolerance makes the QS3VH2245 ideal for high performance communicationapplications.
The QS3VH2245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS:

- PCI/Compact PCI hot-swapping
- 10/100 Base-T, ethernet LAN switch
- Low distortion analog switch
- Replaces mechanical relay
- ATM 25/155 switching

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

QSOPI SOIC TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to +5.5	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Vout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}, \mathrm{V}, \operatorname{lN}=0 \mathrm{~V}, \mathrm{Vout}=0 \mathrm{~V}\right)$

Symbol	Parameter ${ }^{(1)}$	Typ.	Max.	Unit
CIN	Control Inputs	3	5	pF
$\mathrm{C} / / \mathrm{O}$	Quickswitch Channels (Switch OFF)	4	6	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	Description
$\overline{\mathrm{O}} \mathrm{E}$	Output Enable
An	Data I/Os
Bn	Data I/Os

FUNCTIONTABLE(1)

$\overline{\mathrm{O}} \overline{\mathrm{E}}$	Function
H	Disconnected
L	$\mathrm{An}=\mathrm{Bn}$

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Inputs	-	-	0.8	V
IIN	InputLeakage Current	$\mathrm{OV} \leq \overline{\mathrm{OE}} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Current(Hi-Z)	$\mathrm{OV} \leq \mathrm{A}, \mathrm{B} \leq \mathrm{Vcc}$, Switches OFF	-	-	± 1	$\mu \mathrm{A}$
RoN	Switch ON Resistance	$\mathrm{Vcc}=\mathrm{Min}, \mathrm{VIN}=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	20	27	40	Ω
		$\mathrm{VCC}=\mathrm{Min}, \mathrm{V}$ IN $=2.4 \mathrm{~V}$, $\mathrm{ION}=15 \mathrm{~mA}$	20	28	42	

NOTE:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}$ and $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=3.3 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions $^{(1)}$	Max.	Unit
IccQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $f=0$	4	mA
$\Delta \mathrm{ICC}$	Power Supply Current ${ }^{(2,3)}$ per Input HIGH	VCC $=3.6 \mathrm{~V}, \mathrm{VIN}=3 \mathrm{~V}, \mathrm{f}=0$ per Control Input	30	$\mu \mathrm{~A}$
IcCD	Dynamic Power Supply Current per MHZ ${ }^{(4)}$	Vcc $=3.6 \mathrm{~V}, \mathrm{~A}$ and B Pins Open, per Control Input Toggling @ 50% Duty Cycle	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per LVTTL-driven-control-input. A and B pins do not contribute to $\Delta \mathrm{lcc}$.
3. This parameter is guaranteed but not tested.
4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Cload $=50$ pF, Rload $=500 \Omega$, unless otherwise noted

Symbol	Parameter	Min. ${ }^{(3)}$	Typ.	Max.	Unit
tPLH tPHL	DataPropagationDelay Anto/from Bn	-	-	1.25	ns
tPZL tPZH	Switch Turn-On Delay OE to An/Bn	0.5	-	10	ns
tPLZ tPHz	Switch Turn-OffDelay (1) OE to An/Bn	0.5	-	9	ns
fs	Operating Frequency-Data ${ }^{(1,4)}$ $\overline{\text { OE }}=$ LOW	-	-	$150(6)$	MHz
fOE	Operating Frequency-Enable, Select $(1,5)$	-	1	MHz	

NOTES:

1. This parameter is guaranteed but not production tested.
2. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 1.25 ns at $C_{L}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
3. Minimums are guaranteed but not production tested.
4. Maximum frequency for bidirectional data flow.
5. Maximum toggle frequency for $\overline{\mathrm{OE}}$ control input.
6. Measured at Cload $=30 \mathrm{pF}$.

SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Fast Ethernet Data Switching (LAN Switch)

Hot-Swapping: PCI / Compact PCI

ORDERINGINFORMATION

IDTQS XXXXX

SO
Small Outline IC Quarter Size Outline Package 3VH2245
3.3V 8-Bit Bus Switch for Hot Swap Aplications

DATA SHEET DOCUMENT HISTORY

2975 Stender Way
Santa Clara, CA 95054
for Tech Support: logichelp@idt.com (408) 654-6459

